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the intensity of noise generated by this mechanism and has
not attempted to solve the problem of the transmission of the
noise out of the inlet duct, which is of equal importance. It
has been shown in the case of potential-flow variations that
the upstream row generated as much noise as the following
row. As the leading row in a compressor is in a preferential
position from the propagation point of view, this may be the
major source of noise heard outside the inlet duct. When
wakes become appreciable at high incidence the total amount
of noise generated is increased though the fundamental is of
the same order of magnitude as in the low-incidence case.
The sharp wake produces substantial increases in the high
harmonics, and in the case worked the second harmonic
dominated by 10 db.
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On the Coupling between Orthogonal

Couette and Pressure Flows

R. A. Burron*
Southwest Research Instilute, San Antonio, Texas

N the problem of leakage around high-speed shafts
and also short journal bearings, a weak pressure flow acts
at right angles to a strong Couette flow. For the case where
the motion is turbulent, Tao! has been able to solve the
short-bearing problem by neglecting any coupling effects
between the two component flows. Constantinescu? has
written mixing-length equations for such flows, also assuming
the components to be independent. On the other hand,
Prandtl® provided a mixing-length equation which permits
accounting for coupling effects. The purpose of this note
is to see what this predicts and to examine the restrictions
involved in its application.
The mixing-length equation may be written in Cartesian
coordinates as

Toy = (%) + ) [(0u/0y) + (0v/0x)] €0
where J is defined by
J? = 2{(0u/0x)* 4 (Ov/dy)* + (Ow/d2)%] +
[(Ow/dy) + (0v/22)]* + [(du/02) + (ow/0x)]* +
[(ov/0x) + (Qu/oy) ]2 (2)

Simplifying to apply to parallel flow (which is uniform in the
sense that Ou/dzx = dw/dy = Ov/dz = 0), this becomes

T., = [pl2V (Qu/dy)t + (Qw/2)* + ulu/dy)  (3)

Interchanging coordinates,

T = [ol*V (Qw/02)* + (Qu/dy)? + plw/doy)  (4)
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Here the x and z coordinates are parallel to the boundary sur-
faces, and the y coordinate is normal to these. The velocity
u in the z-direction represents the Couette flow, and the ve-
locity w in the z-direction represents the pressure flow. The
fluid density is p, the viscosity is u, and the mixing length is 1.

When 7., is the wall stress of the pressure flow, it is possible
to write

7ol — y/b) = p[I* + A(H] X
{ (Qu/2y)*((0w/dy)/(du/02)] +
p(ou/oy) [(dw/dy)/(du/on1}  (5)

If it is assumed that A(1%)/1% is of the same order or smaller
than w/u, and if w/u « 1, this simplifies to

7 0u/0Y) [1 — (y/b)] = T.w (6)

where b is half the distance separating the plates. To permit
integration, a Couette-flow profile must be used. Since it has
been* shown that the profile u/u, = (y/b)'/7 fits experimental
data, and since small departures are smoothed out by the
integration process, Eq. (6) may be reduced to

Toull — (1/8)(y/)] = Toyw )

Applying this at a point halfway between plates where y = b,
this becomes

T/ Ty = (8/7)(wi/ue) ®

1t is of interest that, if the z-direction flow had been an in-
cremental Couette flow, the quantity 8/7 in Eq. (7) would
be replaced by 1. Thus, it is seen that the resistance relative
to a given wall is not greatly affected by the two types of
pressure distribution.

Quite aside from questions concerning the validity of Egs.
(1) and (2), note that: (a) The solution did not require that
viscous effects be neglected. (b) It was not necessary to
assume an equation for mixing-length variation. (c) It was
not necessary to assume that the mixing-length funetion re-
mains constant, so long as the order of A(I?)/I? is the same
or smaller—i.e., higher-order—than w/u, for the case where
w/u « 1. As simplified in Eq. (4), the basic equation used
is equivalent to stating that the eddy viscosity of the pri-
mary flow also serves as the eddy viscosity of the incremental
flow. Furthermore, in Eq. (4) it is seen that the eddy vis-
cosity e is determined by the vector derivative of the com-
bined velocity with respect to y; hence,

e = pl>V2(0u/dy)? + (dw/dz)? (9)

As used, however, it has not been necessary to accept this
relationship wholly. One need only accept that, in what-
ever true equation governs, the relative participation of the
Ow/0y is such that it tends to vanish as dw/dy — 0.

On the basis of the above arguments, one is tempted to con
clude that for Eq. (8) to be a valid approximation, only a
very low degree of validity is required of the equations which
went into its derivation.
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